Chapter - 1 (Term-I)

(Number System)

class 9th

Key Concepts

4	 	 	 	_	 	 	 	\rightarrow
-								7

- Natural numbers are 1, 2, 3, denoted by N.
- Whole numbers are 0, 1, 2, 3, denoted by W.
- * Integers -3, -2, -1, 0, 1, 2, 3, denoted by Z.
- * Rational numbers All the numbers which can be written in the form p/q, q ≠ 0 are called rational numbers where p and q are integers.
- * Irrational numbers A number s is called irrational, if it cannot be written in the form p/q where p and q are integers and q ≠ 0.
- * The decimal expansion of a rational number is either terminating or non terminating recurring. Thus we say that a number whose decimal expansion is either terminating or non terminating recurring is a rational number.
- * The decimal expansion of a irrational number is non terminating non recurring.
- * All the rational numbers and irrational numbers taken together.
- * Make a collection of real number.
- * A real no is either rational or irrational.
- * If r is rational and s is irrational then r+s, r-s, r.s are always irrational numbers but r/s may be rational or irrational.
- * Every irrational number can be represented on a number line using Pythagoras theorem.
- * Rationalization means to remove square root from the denominator.
 - $\frac{3\,+\,\sqrt{5}}{\sqrt{2}}\,$ to remove we will multiply both numerator & denominator by $\sqrt{2}\,$
 - $\frac{1}{a+\sqrt{b}}$ its rationalization factor $a \mp \sqrt{b}$

BY Reshma kumari (TGT) maths

..

Section - A

- Q.1 Is zero a rational number? Can you write in the form p/q, where p and q are integer and $q \neq 0$?
- Q.2 Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$?
- Q.3 State whether the following statements are true or false give reasons for your answers.
 - (i) Every natural no. is whole number.
 - (ii) Every integer is a whole number.
 - (iii) Every rational number is a whole number.
 - (iv) Every irrational number is a real number.
 - (v) Every real number is an irrational number.
 - (vi) Every point on the number line is of the form \sqrt{m} where m is a natural no's.
- Q.4 Show how $\sqrt{5}$ can be represented on the number line?

Section - B

- Q.5 Find the decimal expansion of $\frac{10}{3}$, $\frac{7}{8}$ and $\frac{1}{7}$? What kind of decimal expansion each has.
- Q.6 Show that $1.272727 = 1.\overline{27}$ can be expressed in the form p/q, where p and q are integers and $q \neq 0$.
- Q.7 Write three numbers whose decimal expressions are non-terminating & non recurring?
- Q.8 Find three different rational between 3/5 and 4/7.
- Q.9 Classify the following numbers as rational or irrational.
 - (a) √23
- (b) √225
- (c) 0.6796

(d) 1.101001000100001....

Section - C

- Q.10 Visualize 3.765 on the number line using successive magnification.
- Q.11 Visualize $4.\overline{26}$ on the number line upto 4 decimal places.
- Q.12 simplify the following expressions.

(i)
$$(5 + \sqrt{7})(2 + \sqrt{5})$$

(ii)
$$(5 + \sqrt{5})(5 - \sqrt{5})$$

(iii)
$$(\sqrt{3} + \sqrt{7})^2$$

(iv)
$$(\sqrt{11} - \sqrt{7}) (\sqrt{11} + \sqrt{7})$$

Q.13 Rationalize the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$.

Section - D

- Q.1 Represent $\sqrt{9.3}$ on number line.
- Q.2 Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is $\pi = c/d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
- Q.3 Simplify

(ii)
$$\left(\frac{1}{3^7}\right)^7$$

(iii)
$$(16)^{\frac{3}{4}}$$

Self Evaluation

Q.1 Write the value of

$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a}$$

Q.2
$$\left\{5\left(8^{\frac{1}{3}}+27^{\frac{1}{3}}\right)^3\right\}^{\frac{1}{4}}$$

Q.3 If a & b are rational number, find the value of a & b in each of the following equalities.

(a)
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$$
 (ii) $\frac{3+\sqrt{7}}{3-\sqrt{7}} = a + b\sqrt{7}$

Q.4 Prove that $\sqrt{2}$ is an irrational number using long division method?