TOPIC- "LIMIT"

Objectives

- Know what left limits, right limits, and limits are
- Know how to compute simple limits
- Know what it means for a function to be continuous
- Know how $\sin (x)$ and $\cos (x)$ behave as $x \rightarrow 0$.

What is a limit?

- A limit is what happens when you get closer and closer to a point without actually reaching it.
- Example: If $f(x)=2 x$ then as $x \rightarrow 1$, $f(x) \rightarrow 2$.
- We write this as $\lim _{x \rightarrow 1} f(x)=2$.

x	0	.9	.99	.999	.9999
$f(x)$	0	1.8	1.98	1.998	1.9998

Why are limits useful?

- Many functions are not defined at a point but are well-behaved nearby.
- Example: If $f(x)=\frac{x^{2}-1}{x-1}$ then $f(1)$ is undefined. However, as $x \rightarrow \frac{1}{4}, f(x) \rightarrow 2$, so $\lim _{x \rightarrow 1} f(x)=2$.

x	0	.9	.99	.999	.9999
$f(x)$	0	1.9	1.99	1.999	1.9999

Left Limits and Right Limits

Consider $f(x)=\frac{x}{|x|} . f(0)$ is undefined.
As $x \rightarrow 0^{-}, f(x)=-1$

x	-1	-.1	-.01	-001	-.0001
$\mathrm{f}(\mathrm{x})$	-1	-1	-1	-1	-1

As $x \rightarrow 0^{+}, f(x)=1$

x	1	.1	.01	.001	.0001
$\mathrm{f}(\mathrm{x})$	1	1	1	1	1

We write this as $\lim _{x \rightarrow 0^{-}} f(x)=-1, \lim _{x \rightarrow 0^{+}} f(x)=1$

Limit Definition Summary

- We say that $\lim _{x \rightarrow a^{-}} f(x)=L$ if $f(x) \rightarrow L$ as $x \rightarrow$ a^{-}
- We say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if $f(x) \rightarrow L$ as $x \rightarrow$ a^{+}
- If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$ (i.e. it doesn't matter which side x approaches a from) then we say that $\lim _{x \rightarrow a} f(x)=L$

Non existence of Limits

- Limits can fail to exist in several ways
- 1. $\lim _{x \rightarrow a^{-}} f(x)$ or $\lim _{x \rightarrow a^{+}} f(x)$ may not exist.
- Example: $\sin \left(\frac{1}{x}\right)$ oscillates rapidly between 0 and 1 as $x \rightarrow 0^{+}$(or 0^{-}). Thus, $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)$ DNE (does not exist)
- Example: $\frac{1}{x}$ gets larger and larger as $x \rightarrow 0^{+}$. We write this as $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$
- 2. $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ may both exist but have different values. Ex: $f(x)=\frac{x}{|x|}$ near $x=0$

Computing Limits

- To compute $\lim _{x \rightarrow a} f(x)$:
- If nothing special happens at $x=a$, just compute $f(a)$. Example: $\lim _{x \rightarrow 2}(3 x-1)=5$
- If plugging in $x=a$ gives $\frac{0}{0}$, factors can often be cancelled when $x \neq a$.

Example:
$\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{x-2}\right)=\lim _{x \rightarrow 2}(x+2)=4$

Computing Limits Continued

- Useful trick: $a-b=(a-b) \cdot \frac{a+b}{a+b}=\frac{a^{2}-b^{2}}{a+b}$
- Example: What is $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$?
$\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}$
$=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 0} \frac{1}{(\sqrt{x+1}+1)}=\frac{1}{2}$

Limits at Infinity

- We can also consider what happens when $x \rightarrow$ ∞ or $x \rightarrow-\infty$. Example: Consider $f(x)=$ $\frac{x-1}{x}=1-\frac{1}{x}$. As $\mathrm{x} \rightarrow \infty($ or $-\infty), f(x) \rightarrow 1$. We write this as $\lim _{x \rightarrow \infty} \frac{x-1}{x}=1$

Computing Limits at $\pm \infty$

- General strategy : figure out the largest terms and ignore everything else
- Example: If $f(x)=\frac{3 x^{2}-x}{4 x^{2}+2 x-5}$, as $x \rightarrow \infty$ only the $3 x^{2}$ in the numerator and the $4 x^{2}$ will really matter, so $\lim _{x \rightarrow \infty} f(x)=\frac{3}{4}$

Growth Rates as $x \rightarrow \infty$

- As $x \rightarrow \infty, 1 \ll \ln x \ll x^{n} \ll c^{x}$ as long as $n>0$ and $c>1$
- Examples:
- $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=0$
- $\lim _{x \rightarrow \infty} \frac{2^{x}}{5 x^{100}}=\infty$

Limit Laws

- If $\lim _{x \rightarrow a} f(x)=\mathrm{L}$ and $\lim _{x \rightarrow a} g(x)=M$ then:
- $\lim _{x \rightarrow a}(f(x)+g(x))=\mathrm{L}+\mathrm{M}$
- $\lim _{x \rightarrow a}(f(x)-g(x))=\mathrm{L}-\mathrm{M}$
- $\lim _{x \rightarrow a}(f(x) g(x))=\mathrm{LM}$
- $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{L}{M}($ if $M \neq 0)$
- Etc.

THANK YOU FOR WATCHING

S.K. DUBEY,PGT(MATHS)
K.V. No.1, Kankarbagh, Patna

